RSA und Primzahlen: Die Mathematik der Geheimnisse

0
224

Das Problem des sicheren Boten

Stellen Sie sich vor, Sie wollen Ihrer Bank eine geheime Nachricht schicken (Ihr Passwort). Das Problem: Das Internet ist wie eine Postkarte. Jeder Knotenpunkt, über den die Daten fließen, kann mitlesen. Wie verschlüsselt man etwas so, dass jeder Ihnen eine Nachricht senden kann (Verschlüsselung), aber nur Sie sie lesen können (Entschlüsselung)?

Die Lösung fanden Rivest, Shamir und Adleman (RSA) im Jahr 1977. Sie nutzten Falltür-Funktionen.

Die Einbahnstraße der Zahlen

Nehmen Sie einen taschenrechner online und multiplizieren Sie zwei Primzahlen:

$53 \times 59 = 3127$.

Das geht in Sekundenbruchteilen.

Aber wenn ich Ihnen nur die Zahl $3127$ gebe und frage: "Welche zwei Primzahlen habe ich malgenommen?", stehen Sie vor einem riesigen Problem. Sie müssen mühsam alle Zahlen durchprobieren.

In der Kryptographie nutzt man Primzahlen mit hunderten von Stellen. Das Produkt ($N$) ist öffentlich bekannt. Aber die Faktoren ($p$ und $q$), die man zum Entschlüsseln braucht, sind geheim. Selbst alle Supercomputer der Welt bräuchten Millionen Jahre, um $N$ wieder in $p$ und $q$ zu zerlegen.

Der Briefkasten-Vergleich

RSA funktioniert wie ein öffentlicher Briefkasten:

  1. Public Key (Das Schloss): Jeder kann Nachrichten in den Briefkasten werfen und ihn verschließen. Dieser Schlüssel ist öffentlich bekannt.

  2. Private Key (Der Schlüssel): Nur der Besitzer des Briefkastens hat den Schlüssel, um ihn zu öffnen und die Nachrichten herauszuholen.

    Wenn Sie also "https" im Browser sehen, hat Ihre Bank Ihnen gerade ihr offenes Vorhängeschloss geschickt. Ihr Browser schließt Ihre Daten damit ein, und nur die Bank kann sie wieder öffnen.

Die Gefahr durch Quantencomputer

Diese Sicherheit ist nicht absolut, sie ist nur eine Frage der Zeit. Ein normaler Computer ist zu langsam zum "Knacken" (Faktorisieren). Aber Quantencomputer könnten mit dem Shor-Algorithmus diese Rechnung theoretisch in Sekunden lösen. Deshalb suchen Mathematiker heute schon nach "Post-Quanten-Kryptographie", die nicht mehr auf Primzahlen basiert, sondern auf noch komplexeren geometrischen Gittern.


Kontakt

Name: Adelard Armino - ChatGPTDeutsch.Info Adelard Armino - ChatGPT Deutsch

Telefon: +49 15227788154

E-Mail: [email protected]

Adresse: Limmerstraße 13, 30451 Hannover, Deutschland

Zoeken
Categorieën
Read More
Shopping
MLBTR Podcast Jose Quintana Luis Gils Injury The Nats TV Situation Salary Floor Talk And More
The latest episode of the MLB Trade Rumors Podcast is now live on , , and wherever you get your...
By Fatima Luettgen 2025-10-26 04:09:16 0 344
Other
Sustained Growth Ahead: Europe Hip Replacement Market Forecast 2025–2033
Europe Hip Replacement Market to Reach US$ 3.87 Billion by 2032, Driven by Aging Population and...
By Renub Research 2025-06-11 07:49:06 0 2K
Other
Is React App Development in Dubai the Right Choice for Your Business?
In today’s fast-paced digital economy, businesses in Dubai are racing to build dynamic,...
By Five Programmers 2025-11-12 06:48:45 0 376
Other
Challenges and Operational Risks in the Pipeline Safety Market
Pipeline Safety Market Overview The Pipeline Safety Market is witnessing robust growth...
By Priyanka Parate 2025-12-24 06:13:11 0 68
Shopping
edge the designer has always been all about Dior world building
there are so many young designers that I wasn't aware of and we at machine a are always looking...
By Aliza Hodge 2025-03-01 11:07:11 0 3K